在设计高性能的推荐美食系统之前,首先需要明确系统的需求。一般来说,推荐美食系统需要满足以下几个方面的需求:,二、表设计
基于以上需求分析,我们可以设计以下几个表结构来支持推荐美食系统的功能:,CREATE TABLE
user
(user_id
INT PRIMARY KEY AUTO_INCREMENT,username
VARCHAR(100) NOT NULL,gender
ENUM(‘male’, ‘female’) NOT NULL,age
INT NOT NULL);,CREATE TABLE
food
(food_id
INT PRIMARY KEY AUTO_INCREMENT,food_name
VARCHAR(100) NOT NULL,food_type
VARCHAR(100) NOT NULL);,CREATE TABLE
user_food_rating
(user_id
INT NOT NULL,food_id
INT NOT NULL,rating
FLOAT NOT NULL,PRIMARY KEY (
user_id
, food_id
),FOREIGN KEY (
user_id
) REFERENCES user
(user_id
),FOREIGN KEY (
food_id
) REFERENCES food
(food_id
));,CREATE TABLE
user_food_preference
(user_id
INT NOT NULL,food_id
INT NOT NULL,preference
FLOAT NOT NULL,PRIMARY KEY (
user_id
, food_id
),FOREIGN KEY (
user_id
) REFERENCES user
(user_id
),FOREIGN KEY (
food_id
) REFERENCES food
(food_id
));,CREATE TABLE
food_similarity
(food_id1
INT NOT NULL,food_id2
INT NOT NULL,similarity
FLOAT NOT NULL,PRIMARY KEY (
food_id1
, food_id2
),FOREIGN KEY (
food_id1
) REFERENCES food
(food_id
),FOREIGN KEY (
food_id2
) REFERENCES food
(food_id
));,三、代码示例,SELECT f.food_name, f.food_type
FROM food f
INNER JOIN (
SELECT food_id, SUM(similarity * preference) AS score
FROM user_food_preference ufp
INNER JOIN food_similarity fs ON ufp.food_id = fs.food_id1
WHERE ufp.user_id = 1
GROUP BY food_id
) AS t ON f.food_id = t.food_id
ORDER BY score DESC
LIMIT 10;,INSERT INTO user_food_rating (user_id, food_id, rating)
VALUES (1, 1001, 4.5)
ON DUPLICATE KEY UPDATE rating = 4.5;,以上代码示例仅供参考,实际应用中可能需要根据具体情况进行修改。,综上所述,通过合理的MySQL表结构设计和优化,可以实现一个高性能的推荐美食系统。同时,结合实时更新的策略和准确性的推荐算法,可以提供给用户最符合其口味的美食推荐。当然,在实际应用中,还需要考虑其他因素,如缓存、搜索引擎、数据分片等,以进一步提升系统的性能和准确性。,