全局缓存是将计算结果存储在全局变量中,并在需要的时候直接使用。这种策略适用于计算结果不会随时间变化的场景,可以有效减少重复计算。,2.2. 内存缓存
内存缓存是将计算结果存储在内存中,以便后续使用。这种策略适用于计算结果需要频繁使用,且计算量较大的场景。Python中,可以使用字典(dict)或者列表(list)等数据结构实现内存缓存。,2.3. 文件缓存
文件缓存是将计算结果存储在文件中,以便后续使用。这种策略适用于计算结果需要长期保存,且需要持久化的场景。Python中,可以使用标准库中的pickle模块将计算结果序列化到文件中,并在需要的时候进行反序列化。,2.4. 数据库缓存
数据库缓存是将计算结果存储在数据库中,以便后续使用。这种策略适用于计算结果需要长期保存且需要跨多个应用程序共享的场景。Python中,可以使用各种数据库技术如MySQL、Redis等来实现数据库缓存。,在上面的示例中,我们使用
cache
装饰器实现了内存缓存功能。当调用fibonacci
函数时,如果参数已经计算过并存在于缓存中,直接返回缓存结果;否则,进行计算并将结果存入缓存。这样,就避免了重复计算,提高了程序的执行效率。,