Python3 迭代器与生成器

迭代器

迭代是 Python 最强大的功能之一,是访问集合元素的一种方式。

迭代器是一个可以记住遍历的位置的对象。

迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。

迭代器有两个基本的方法:iter() 和 next()

字符串,列表或元组对象都可用于创建迭代器:

实例(Python 3.0+)

>>> list=[1,2,3,4]
>>> it = iter(list)    # 创建迭代器对象
>>> print (next(it))   # 输出迭代器的下一个元素
1
>>> print (next(it))
2
>>>

迭代器对象可以使用常规for语句进行遍历:

实例(Python 3.0+)

#!/usr/bin/python3 list=[1,2,3,4]it = iter(list)    # 创建迭代器对象for x in it:    print (x, end=" ")

执行以上程序,输出结果如下:

1 2 3 4

也可以使用 next() 函数:

实例(Python 3.0+)

#!/usr/bin/python3 import sys         # 引入 sys 模块 list=[1,2,3,4]it = iter(list)    # 创建迭代器对象 while True:    try:        print (next(it))    except StopIteration:        sys.exit()

执行以上程序,输出结果如下:

1234

创建一个迭代器

把一个类作为一个迭代器使用需要在类中实现两个方法 __iter__() 与 __next__() 。

如果你已经了解的面向对象编程,就知道类都有一个构造函数,Python 的构造函数为 __init__(), 它会在对象初始化的时候执行。

更多内容查阅:Python3 面向对象

__iter__() 方法返回一个特殊的迭代器对象, 这个迭代器对象实现了 __next__() 方法并通过 StopIteration 异常标识迭代的完成。

__next__() 方法(Python 2 里是 next())会返回下一个迭代器对象。

创建一个返回数字的迭代器,初始值为 1,逐步递增 1:

实例(Python 3.0+)

class MyNumbers:  def __iter__(self):    self.a = 1    return self  def __next__(self):    x = self.a    self.a += 1    return x myclass = MyNumbers()myiter = iter(myclass) print(next(myiter))print(next(myiter))print(next(myiter))print(next(myiter))print(next(myiter))

执行输出结果为:

12345

StopIteration

StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 __next__() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。

在 20 次迭代后停止执行:

实例(Python 3.0+)

class MyNumbers:  def __iter__(self):    self.a = 1    return self  def __next__(self):    if self.a <= 20:      x = self.a      self.a += 1      return x    else:      raise StopIteration myclass = MyNumbers()myiter = iter(myclass) for x in myiter:  print(x)

执行输出结果为:

1234567891011121314151617181920

生成器


在 Python 中,使用了 yield 的函数被称为生成器(generator)。

yield 是一个关键字,用于定义生成器函数,生成器函数是一种特殊的函数,可以在迭代过程中逐步产生值,而不是一次性返回所有结果。

跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。

当在生成器函数中使用 yield 语句时,函数的执行将会暂停,并将 yield 后面的表达式作为当前迭代的值返回。

然后,每次调用生成器的 next() 方法或使用 for 循环进行迭代时,函数会从上次暂停的地方继续执行,直到再次遇到 yield 语句。这样,生成器函数可以逐步产生值,而不需要一次性计算并返回所有结果。

调用一个生成器函数,返回的是一个迭代器对象。

下面是一个简单的示例,展示了生成器函数的使用:

实例

def countdown(n):    while n > 0:        yield n        n -= 1 # 创建生成器对象generator = countdown(5) # 通过迭代生成器获取值print(next(generator))  # 输出: 5print(next(generator))  # 输出: 4print(next(generator))  # 输出: 3 # 使用 for 循环迭代生成器for value in generator:    print(value)  # 输出: 2 1

以上实例中,countdown 函数是一个生成器函数。它使用 yield 语句逐步产生从 n 到 1 的倒数数字。在每次调用 yield 语句时,函数会返回当前的倒数值,并在下一次调用时从上次暂停的地方继续执行。

通过创建生成器对象并使用 next() 函数或 for 循环迭代生成器,我们可以逐步获取生成器函数产生的值。在这个例子中,我们首先使用 next() 函数获取前三个倒数值,然后通过 for 循环获取剩下的两个倒数值。

生成器函数的优势是它们可以按需生成值,避免一次性生成大量数据并占用大量内存。此外,生成器还可以与其他迭代工具(如for循环)无缝配合使用,提供简洁和高效的迭代方式。

执行以上程序,输出结果如下:

54321

以下实例使用 yield 实现斐波那契数列:

实例(Python 3.0+)

#!/usr/bin/python3 import sys def fibonacci(n): # 生成器函数 - 斐波那契    a, b, counter = 0, 1, 0    while True:        if (counter > n):            return        yield a        a, b = b, a + b        counter += 1f = fibonacci(10) # f 是一个迭代器,由生成器返回生成 while True:    try:        print (next(f), end=" ")    except StopIteration:        sys.exit()

执行以上程序,输出结果如下:

0 1 1 2 3 5 8 13 21 34 55


发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

返回顶部
跳到底部

Copyright 2011-2024 南京追名网络科技有限公司 苏ICP备2023031119号-6 乌徒帮 All Rights Reserved Powered by Z-BlogPHP Theme By open开发

请先 登录 再评论,若不是会员请先 注册